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ABSTRACT

Energy dissipation in collisionless plasmas is a longstanding fundamental physics problem. Although

it is well known that magnetic reconnection and turbulence are coupled and transport energy from

system-size scales to sub-proton scales, the details of the energy distribution and energy dissipation

channels remain poorly understood. Especially, the energy transfer and transport associated with

three dimensional (3D) small-scale reconnection that occurs as a consequence of a turbulent cascade

is unknown. We use an explicit fully kinetic particle-in-cell code to simulate 3D small scale magnetic

reconnection events forming in anisotropic and Alfvénic decaying turbulence. We identify a highly

dynamic and asymmetric reconnection event that involves two reconnecting flux ropes. We use a

two-fluid approach based on the Boltzmann equation to study the spatial energy transfer associated

with the reconnection event and compare the power density terms in the two-fluid energy equations

with standard energy-based damping, heating and dissipation proxies. Our findings suggest that

the electron bulk flow transports thermal energy density more efficiently than kinetic energy density.

Moreover, in our turbulent reconnection event, the energy-density transfer is dominated by plasma

compression. This is consistent with turbulent current sheets and turbulent reconnection events, but

not with laminar reconnection.

Keywords: Magnetic Reconnection, Turbulence.

1. INTRODUCTION

The solar wind in the inner heliosphere is a weakly col-

lisional turbulent plasma in which the energy is trans-

ported from large (∼ 109 km) to small (∼ 10−1 km)

scales via an active turbulent cascade (Coleman Jr 1968;

Marsch & Tu 1990). Although the collisionless nature

of the solar wind precludes classical viscous dissipation

of these turbulent fluctuations, the non-adiabatic evolu-

tion of the solar wind (Gazis & Lazarus 1982; Matteini

Corresponding author: Jeffersson Andres Agudelo Rueda

jeffersson.agudelo.18@ucl.ac.uk

et al. 2007; Hellinger et al. 2011) suggests the action of

local heating mechanisms (Barnes 1968; Goldstein et al.

2015). The plasma-physics processes responsible for this

heating are not fully understood yet. The observed ve-

locity distribution function of the solar wind species of-

ten exhibits non-thermal features e.g. (Marsch et al.

1982; Feldman et al. 1975, 1978; McComas et al. 1992).

Important progress has been made to understand

heating and energy dissipation e.g. (Gary 1999; Howes

et al. 2017; Klein et al. 2017; Matthaeus et al. 2020).

Landau damping, ion cyclotron damping and stochas-

tic heating are considered collisionless dissipation mech-

anisms that transfer energy from the electromagnetic

field to the plasma particles (Marsch et al. 2003; Kasper
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et al. 2008; Chandran et al. 2010, 2013). The dissi-

pation occurs predominantly in intermittent structures

which form in plasma turbulence (Matthaeus et al. 1999;

Kiyani et al. 2015).

Like turbulence, magnetic reconnection is a process

that emerges on a broad range of scales and under a

large variety of plasma conditions. Magnetic reconnec-

tion occurs when magnetic structures form regions in

which the frozen-in condition is locally broken allowing

the exchange of particles between the magnetic struc-

tures (Hesse & Schindler 1988; Schindler et al. 1988).

Magnetic reconnection and turbulence are closely

linked. Magnetic reconnection self-consistently occurs

as a consequence of the turbulent cascade (Servidio et al.

2010; Loureiro & Boldyrev 2020; Agudelo Rueda et al.

2021) and turbulence emerges in current sheets, exhaust

flows, electron streamers, and shocks associated with re-

connection events (Pucci et al. 2017; Kowal et al. 2017;

Lapenta et al. 2020). During magnetic reconnection,

plasma particles are heated and accelerated while the

magnetic field topology changes (Pontin 2011; Zweibel

& Yamada 2016; Lazarian et al. 2020).

The role of magnetic reconnection for the evolution

of energy in collisionless plasmas is unclear. Although

magnetic reconnection transports energy from large to

small scales (Sundkvist et al. 2007; Franci et al. 2017;

Loureiro & Boldyrev 2020), the details of the energy

transport across scales and the role of reconnection in

the turbulent cascade are a matter of ongoing research

(Loureiro & Boldyrev 2017; Franci et al. 2017; Adhikari

et al. 2021). The energy transfer between fields and par-

ticles as well as the transfer between kinetic and thermal

degrees of freedom during reconnection are the key ob-

jectives of this research area.

The energy transfer and transport associated with

magnetic reconnection has been addressed by previous

studies that focus on idealized 2D Harris current-sheet

reconnection (Yin et al. 2001; Schmitz & Grauer 2006;

Wang et al. 2015; Pezzi et al. 2021), 3D laminar colli-

sionless reconnection in the context of magnetospheres

(Wang et al. 2018) and 2D reconnection in turbulent

plasma (Fadanelli et al. 2021). In this work, we use

particle-in-cell (PIC) simulations to study the energy

transfer associated with 3D small-scale magnetic recon-

nection that self-consistently occurs as a consequence

of an anisotropic turbulent cascade. In section 2, we

present our theoretical framework to study the energy

transfer and transport in our plasma simulations. In

section 3 we present our simulation results emphasizing

the presence of agyrotropy in section 3.3 and the energy

distribution in section 3.4. In section 4, we discuss the

implications of our results and in section 5 we provide

conclusions.

2. ENERGY TRANSFER AND TRANSPORT

The total energy in a closed volume of plasma is

partitioned amongst the particles and the electromag-

netic fields. The bulk kinetic energy density of the

particle species s is associated with the first velocity

moment of the particle velocity distribution function

fs = fs(x,v, t) and therefore with the bulk flux of the

particles. The thermal energy density is associated with

the second velocity moment and thus the pressure of

the particles. The evolution of fs follows the Boltzmann

equation

∂fs
∂t

+v ·∇fs+
qs
ms

(E + v ×B) ·∇vfs =

(
∂fs
∂t

)
c

, (1)

where v is the velocity, E is the electric field, B is the

magnetic field, qs is the charge and ms is the mass of

a particles. The term (∂fs/∂t)c on the right-hand side

represents the change in the distribution function due

to collisions. This term includes individual correlations

between fields and particles, based on the particles’ in-

dividual Coulomb potentials (Klimontovich 1997). To

study the energy transport we derive a set of energy

equations based on the Boltzmann equation (1). We

first define the density

ns ≡
∫
fsd

3v, (2)

the bulk velocity

us ≡
1

ns

∫
fsvd

3v, (3)

and the pressure tensor

Ps ≡ ms

∫
fs(v − us)(v − us)d

3v, (4)

where (v−us)(v−us) is the dyadic product. We define

the heat flux vector

hs ≡
1

2
ms

∫
fs(v − us) · (v − us)(v − us)d

3v. (5)

We define the first moment of the collision term in Eq.

(1) as

Ξ1 =

∫
v

(
∂fs
∂t

)
c

d3v, (6)

and the second moment as

Ξ
2

=

∫
vv

(
∂fs
∂t

)
c

d3v, (7)
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With these definitions, we compute the first and sec-

ond moments of Eq. (1) (see Appendix A for details).

The first moment of Eq. (1) yields the kinetic energy

equation

dεks
dt

+ us · ∇ ·Ps + εks∇ · us − qsns(us ·E) = Ξks , (8)

where d/dt = ∂/∂t+(us ·∇) is the total time derivative,

εks =
1

2
nsms(us · us), (9)

is the kinetic energy density and

Ξks = msus ·Ξ1
s (10)

represents the irreversible kinetic energy transfer. The

terms us·∇·Ps, ε
k
s∇·us and the advective term (us·∇)εks

are associated with the term v · ∇fs in Eq. (1). There-

fore, these terms represent kinetic energy-density trans-

port due to the free streaming of particles. Conversely,

the term −qsns(us ·E), associated with the electric field,

represents the energy-density transfer between particle

bulk flows and fields.

The second moment of Eq. (1) yields the thermal

energy equation

dεths
dt

+∇ · hs +∇us : Ps + εths ∇ · us = Ξths , (11)

where

εths =
1

2
Tr(Ps) (12)

is the thermal energy density and

Ξths = −msus ·Ξ1 +
ms

2
Tr
(
Ξ

2
)

(13)

represents the irreversible the thermal energy transfer.

The term Tr stands for the trace of the tensor and ∇us :

Ps is the double contraction of the strain tensor∇us and

Ps. The terms ∇·hs, ∇us : Ps and εths ∇·us, associated

with v·∇fs in Eq. (1), represent thermal energy-density

transport due to the free streaming of particles.

The terms on the left-hand sides of Eqs. (8) and

(11) describe collisionless processes whereas the terms

on the right-hand sides describe collisional processes in

the plasma which generate an increase in the plasma

entropy.

Equations (8) and (11) alone do not capture total en-

ergy conservation because they do not account for the

rate of change in the electromagnetic energy density

∂εem/∂t, nor for the electromagnetic energy flux ∇ · S,

where

εem =
1

2

(
1

µ0
B ·B + ε0E ·E

)
(14)

is the electromagnetic energy density and S = E×B/µ0

is the Poynting vector. The expression that accounts for

these changes is Poynting’s theorem

∂εem

∂t
+∇ · S + J ·E = 0. (15)

Nevertheless, Equations (8) and (11) are exact in their

description of the kinetic and thermal energy-density

transfer and transport, as well as the energy-density ex-

change between fields and particles.

Before tackling the energy transfer problem, we ex-

plicitly define the following three terms, which are often

used interchangeably in the literature:

• Heating is any increase in εths , and cooling is any

decrease in εths . Heating can be either reversible

or irreversible.

• Damping is any decrease in εem, and growth is any

increase in εem. Damping/growth can be either

reversible or irreversible.

• Dissipation is any irreversible energy transfer lead-

ing to an increase in εths .

Dissipation corresponds to an increase in entropy of

the velocity distribution function, which is challenging

to quantify directly both in space measurements and

in simulations. Nonetheless, recent studies (Pezzi et al.

2019; Matthaeus et al. 2020; Pezzi et al. 2021) show that

in collisionless plasmas energy-based dissipation proxies

such as the Zenitani parameter (Zenitani et al. 2011)

Dz,s = J · (E + us ×B)− nsqs(us ·E), (16)

and the strain-pressure interaction ∇us : Ps (Yang

et al. 2017) are spatially correlated with dimensionless
measures of non-thermal distribution functions (Kauf-

mann & Paterson 2009; Greco et al. 2012; Liang et al.

2019) and plasma agyrotropy (Scudder & Daughton

2008). In Eq. (16), J =
∑
s=i,e qsnsus is the electric

current density.

These energy-based dissipation proxies are effectively

power density terms derived from the left-hand sides of

our Eqs. (8) and (11). According to our definitions,

Dz,s is a damping measure since it quantifies the energy

transfer from the electromagnetic fields into bulk kinetic

energy and vice versa.

The strain-tensor interaction has gyrotropic and agy-

rotropic contributions. We de-compose the pressure ten-

sor as Pij,s = psδij + Πij,s, where

ps =

3∑
i=1

Pii,s/3 (17)
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is the isotropic scalar pressure and

Πij,s = (Pij,s + Pji,s)/2− psδij (18)

is the deviatoric pressure. Likewise, the strain-rate ten-

sor ∇us can be expressed as ∇uij,s = θsδij/3 + Dij,s,

where θs = ∇ · us represents the dilatation term and

Dij,s =
1

2

(
∂ui,s
∂xj

+
∂uj,s
∂xi

)
− 1

3
θsδij , (19)

represents the symmetric traceless strain-rate tensor

(Yang et al. 2017). Thus, the strain-tensor interaction,

which is a heating/cooling proxy according to our defi-

nitions, is

∇us : Ps = psθs + Πij,sDij,s, (20)

where the first terms on the right-hand side is known

as pθs and the second term on the right-hand side is

known as Pi-Ds(Yang et al. 2017). For comparison

with previous studies (Pezzi et al. 2021; Bandyopadhyay

et al. 2020), in section 3.6, we compute Dij,s, psθs and

Πij,sDij,s and compare them with the energy transfer

and transport terms, −nsqs(us · E) and ∇us : Ps, in

Eqs. (8) and (11).

3. SIMULATION RESULTS

3.1. Simulation setup

We use the explicit Plasma Simulation Code (PSC,

Germaschewski et al. 2016) to simulate anisotropic

Alfvénic turbulence in an ion-electron plasma in the

presence of a constant background magnetic field B0 =

B0ẑ. The simulation domain is an elongated box of size

Lx × Ly × Lz = 24di × 24di × 125di with spatial res-

olution ∆x = ∆y = ∆z = 0.06di, where di = c/ωpi
is the ion inertial length, c is the speed of light, ωpi =√
n0q2i /miε0 is the ion plasma frequency and n0 is the

constant initial ion density. The background ion Alfvén

speed ratio in our simulations is vA,i/c = 0.1, where

vA,i = B0/
√
µ0n0mi is the ion Alfvén speed. The num-

ber of macro particles per cell is 100 ions and 100 elec-

trons. We use a mass ratio of mi/me = 100 so that

de = 0.1di. We set the initial thermal-to-magnetic en-

ergy ratio βs = 2n0µ0kBTs/B
2
0 = 1 where Ts is the tem-

perature of species s and kB is the Boltzmann constant.

The details of the simulation setup and the overall sim-

ulation results are presented by Agudelo Rueda et al.

(2021), where the authors report a reconnection event

that involves two reconnecting flux-ropes.

3.2. Reconnection event overview

Panel a) in Figure 1 shows the volume rendering of the

current density in our simulation domain at the simu-

lated time t = 120ω−1pi . Current filaments that form in

the turbulent cascade are mostly elongated along the di-

rection of the background magnetic field. At this time

in the simulation, we apply the set of indicators pre-

sented by Agudelo Rueda et al. (2021) to identify and

locate reconnection sites. We select one reconnection

event that involves two reconnecting flux-ropes as shown

in panel b) of Figure 1 where the magnetic-field lines are

color-coded with |B|. The magnetic flux-ropes contain

an intense magnetic field, especially the lower flux-rope

which is more twisted and has a smaller radius than

the upper flux-rope. Conversely, the magnetic field be-

tween the flux-ropes is weak. The cuts in panel b) show

Jz in the xy simulation plane. For our analysis of this

event, we apply a 2D cut in the xy-plane at z = 77di.

Panel c) of Figure 1 shows the magnetic-field lines of

the field components in the xy-plane, i.e., (Bx, By) as

black contours. Panel c) illustrates the complexity of

the magnetic topology in the region of interest. For our

energy analysis we select a volumetric sub-region of size

10 d3i centered around the identified reconnecting region.

The green squared in panel c) highlights the intersection

of the selected sub-region with the central 2D cut from

panel b).

Even though the background field is in the z-direction,

the current structures are not exactly aligned with the

z-direction. Instead, the geometric features of the recon-

nection event are aligned with the plane perpendicular

to the current sheet that sustains the magnetic gradient.

Therefore, we determine a reference frame that is aligned

with the main axis of the current sheet. We determine

the direction of the main axis of the current-sheet by

3D rendering Jz and measuring the inclination of the

coherent structure that crosses the point x = 13.5di and

y = 21.5di in the xy-plane. We then apply a coordinate

transformation from the reference frame (RF) (x, y, z)

to a new RF (r, p, a) aligned with the main axis of the

current-sheet. The unit vectors of this RF are (r̂, p̂, â).

In this RF â is anti-parallel to the main axis of the

current-sheet, p̂ is an arbitrary vector in the plane per-

pendicular to â, and r̂ is the vector that completes the

right-handed coordinate system. Since the components

r and p are in the plane perpendicular to the current

structure, we denote them as the in-plane components.

In the following analysis we use the RF (r, p, a) and

select a cubic region of size 10 di. Although the event

is three-dimensional and the magnetic field lines extend

in three dimensions, we select a 2D cut of the cubic

region in the rp-plane similar to the green square in

panel c) of Figure 1. This 2D cut is representative of

the reconnection event as we show in Section 3.3.

Panel a) in Figure 2 shows the magnetic-field magni-

tude in the region of interest normalized to B0. The
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a)

b)

c)

Figure 1. Spatial context of the reconnection event within the simulation domain. Panel a) shows a volume rendering of |J|.
Panel b) shows the 3D magnetic field lines color-coded with |B|. On the vertical cuts in panel b) we show Jz. Panel c) shows
the magnetic field lines in the xy-plane. The black contours show in-plane magnetic-field lines. The green square highlights the
size and position of the region for the energy analysis.

black contours represent the in-plane magnetic-field

lines which we compute by creating an array of seed

points placed on the vertices of a squared grid in the rp-

plane. Then, we use the in-plane magnetic field vectors

to create the streamlines. We propagate the numerical

integration in both directions: forwards and backwards.

Panel b) in Figure 2 shows (Ba − Ba,0)/B0, where Ba
is the out-of-plane component of the magnetic field and

Ba,0 = B0 · â is the projection of B0 on the a-direction.

We subtract Ba,0 to improve the visibility of the multi-

polar configuration of this component. The black arrows

in this panel represent the in-plane magnetic-field vec-

tors Brp = Br r̂ + Bpp̂. In order for reconnection to

occur, the in-plane components of the magnetic fields of

reconnecting structures must have different directions.

The plotted in-plane magnetic-field lines suggest the

presence of effective separatrices between regions of op-

posite Brp within the black square.

The in-plane magnetic-field lines in panel a) along

with the direction of the in-plane magnetic-field vectors

suggest the presence of two x-points which we mark with

two black stars, one located at r = 5.58di and p = 6.6di
and the other at r = 6.5di and p = 6.2di. We estab-

lish the position of the x-points by identifying the saddle

points of the in-plane magnetic field. The magnetic con-

figuration is complex, and the black square outlines the

central region in which the reconnection occurs. Within

this region, the magnetic field is non-uniform. The sub-

region where |B| ≈ 0 represents a null region. From

now on, we refer to the region enclosing the x-points

as the diffusion region. Since transverse 2D cuts to 3D

magnetic flux-ropes resemble the geometry of magnetic
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a) b) c) d)

Figure 2. 2D cuts in the rp-plane at simulation time t = 120ω−1
pi . a) Magnetic field magnitude |B|/B0. The black contours

represent the in-plane magnetic-field lines and the black stars represent two x-points. b) Out of plane component magnetic
field (Ba − Ba,0)/B0. The black arrows in this panel represent the in-plane magnetic vectors (Brp). c) Out of plane electron
speed ua,e/vA,i. The black arrows in this panel represent the in-plane electron velocity vectors (urp,e/vA,i). d) out of plane ion
speed ua,i/vA,i. The black arrows in this panel represent the in-plane ion velocity vectors (urp,i). In all panels the black square
outlines the diffusion region.

islands, we now refer to the magnetic-field lines which

are quasi-circular in panel a) as magnetic islands.

Panel c) shows the out of plane component of the elec-

tron velocity ua,e normalized to the ion Alfvén speed

vA,i. The red color indicates electrons moving out of the

plane whereas the blue color indicates electrons mov-

ing into the plane. The black arrows of this panel

represent the in-plane electron velocity vectors urp,e =

ur,er̂ + up,ep̂. Within the region of interest, there are

counter-streaming electrons following the separatrices.

Likewise, we locate electrons streaming out of the plane

through the diffusion region. Within the magnetic is-

lands the electrons stream into the plane. In most of

the magnetic islands, the electrons follow quasi-circular

orbits due to their magnetization. However, in the mag-

netic island centered at r = 4.5di and p = 2.2di, the

electrons demagnetize and traverse into the magnetic

island connecting with the stream of electrons at the

edge of the magnetic island.

Panel d) shows the out of plane component of the ion

velocity ua,i normalized to vA,i. The black arrows in this

panel represent the in-plane ion velocity vectors urp,i =

ur,ir̂+up,ip̂. Within the diffusion region the out of plane

ion velocity is small which suggests that the ion motion

is mostly constrained to the plane. The in-plane motion,

however, is considerable and the ions move across the

separatrices since they are demagnetized.

3.3. Particle agyrotropy in the diffusion region

During the reconnection of magnetic flux-ropes, the

plasma expansion/contraction is not isotropic. There-

fore, at kinetic scales the plasma pressure of each species

can develop anisotropy and agyrotropy. Figure 3 shows

our pressure terms according to Eqs. (17) and (18) for

electrons and ions normalised to the initial ion pressure

p0 = n0miv
2
A,i. Panels a) and e) show the isotropic

scalar pressure for electrons pe and ions pi respectively.

For both species, the scalar pressure is greater inside the

magnetic islands than outside due to the large density of

particles (not shown here). Likewise, pe and pi display

gradients along and across the separatrices. We find that

pe is lower in the region between the magnetic islands

as well as between the x-points compared to inside the

magnetic islands.

Panels b), c) and d) of Figure 3 show the off-diagonal

components of the electron pressure tensor according

to Eq. (18), Πra,e, Πpa,e, and Πpr,e, respectively. We

here introduce our notation 〈...〉 for the spatial aver-

age of a quantity over a given domain. The averages

over the sub-domain of |Πra,e|, and |Πpa,e|, 〈|Πra,e|〉,
and 〈|Πpa,e|〉, are about 10% of 〈pe〉. Πra,e and Πpa,e

present a strong dipole-like configuration centered on

the magnetic islands. There is a shallower, yet visible,

gradient in Πra,e, Πpa,e and Πpr,e in the region between

the islands as well as in the diffusion region. Conversely,

Πpr,e exhibits a quadrupolar configuration within the

magnetic islands. The non-zero values of Πra,e, Πpa,e

and Πpr,e show that the plasma is agyrotropic, suggest-

ing that small-scale kinetic processes occur. Similar pat-
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terns are reported along the separatrices of 2D collision-

less reconnection (Yin et al. 2001; Schmitz & Grauer

2006; Wang et al. 2015) and laminar 3D collisionless

reconnection (Wang et al. 2018). However, unlike pre-

vious studies, we observe the same patterns within the

magnetic islands of turbulent 3D magnetic reconnection.

This is a fundamental difference between the reconnec-

tion that occurs in turbulence and steady state reconnec-

tion that occurs in Harris current-sheet configurations.

Panels f), g) and h) of Figure 3 show the off-diagonal

components of the ion pressure tensor according to

Eq. (18), Πra,i, Πpa,i and Πpr,i respectively. The off-

diagonal terms for ions, unlike electrons, have a less co-

herent pattern attached to the in-plane magnetic field

topology. The reason for this detachment lies in the de-

magnetization of the ions at these scales. Nevertheless,

there is a gradient of these terms suggesting agyrotropy

effects in the ion dynamics as well.

Figure 4 shows a magnification of the region enclosed

by the black square in Figure 2. Panels a) to d) show

a magnification of the electron pressure terms shown in

panels a) to d) of Figure 3. To make a direct com-

parison with previous 2D studies, panels e) to h) show

sketches summarizing known patterns associated with

the electron pressure components that emerge from 2D

collisionless reconnection in the absence of a guide field

(Yin et al. 2001; Schmitz & Grauer 2006; Wang et al.

2015). In this region, unlike within the magnetic is-

lands of Figure 3, our simulation results of the elec-

tron pressure patterns match those patterns shown in

the sketches in panels e) to h) in the region where the

magnetic field has a local minimum according to panel

a) in Figure 1. However, below the x-point located at

r = 5.58di and p = 6.6di, the pattern no longer corre-

sponds to the sketched expectations. Moreover, Πpr,e is

less coherent, and we do not recognize a clear quadrupo-

lar configuration as in the sketches for the 2D case.

Figure 5 shows a 3D representation of the pressure

components for electrons in panels a) through d), and for

ions in panels e) through h). The 2D cut at a = 2.76di
corresponds to the 2D cut in Figure 3. The plotted

3D structures are isosurfaces of the pressure component

depicted on the 2D planes. For a given quantity ψ, the

value of the isosurfaces corresponds to Sψ = ±(〈|ψ|〉 +

2σ|ψ|), where σ|ψ| is the standard deviation of |ψ|. The

isosurfaces in panels a) through h) have the shape of

elongated and thin surfaces with local curvatures along

the a-axis. The agyrotropic patterns in Figure 3 extend

for ∼ 5di along the a-axis.

3.4. Energy transfer and transport

We use the power density expressions for the kinetic

energy in Eq. (8) and thermal energy in Eq. (11) to de-

scribe the energy transfer and transport associated with

our reconnection event. To compute the partial time

derivatives of a quantity, we use a central difference ap-

proach. Since the Alfvén transient time is ∼ 100 ω−1pi ,

a time resolution of 6 ω−1pi is sufficient to capture the

relevant dynamics of interest. To estimate the spatial

derivatives, we use a standard cell-centered first neigh-

bors approach. We calculate all scalar products cell-wise

in the simulation domain. Panels a) to e) of Figure 6

show 2D cuts of each term in Eq. (8) for electrons nor-

malized to ∆ε0 = ωpimiv
2
A,i.

Panel a) shows, at the simulation time t = 120ω−1pi ,

the total time derivative of the kinetic energy density

dεke/dt. The domain exhibits considerable temporal

changes of the kinetic energy density at the centers of the

magnetic islands. We also detect negative dεke/dt at the

edge of the top left magnetic island and positive dεke/dt

in the diffusion region. Conversely, there is almost no

change in εthe in the region between the x-points.

Panel b) shows the scalar product ue · ∇ · Pe which

quantifies the change of kinetic energy due to the advec-

tion of the pressure tensor. This energy change is trans-

ported by the electron flow. The quantity ue · ∇ ·Pe is

also known as the pressure work (Fadanelli et al. 2021).

There is a strong conversion of energy associated with

the pressure work at the center of the magnetic islands.

However, the energy change associated with this term is

around 10 times greater than the local dεke/dt. Unlike

dεke/dt, at the edge of the top left magnetic island, there

is a strong gradient of ue · ∇ · Pe from the left-hand

side of the magnetic island to the right-hand side. In

addition, ue · ∇ ·Pe has a local minimum in the region

between the x-points.

Panel c) shows εke∇ · ue which represents the kinetic

energy change due to divergent or convergent flow pat-

terns in the electron bulk velocity. Like for the previous

terms, εke∇ · ue is greater at the center of the magnetic

islands than in the region between them. There is no

noticeable gradient of this terms between the x-points.

Although panels a), b) and c) show similar patterns in

their signs, there are local differences, specially in the

diffusion region.

Panel d) shows −qene(ue · E) which represents the

energy exchange between the electrons and the electric

field. We find a considerable energy conversion not only

within the magnetic islands but also in the region be-

tween the islands as well as in the region between the

x-points. In the region between the x-points, the elec-

trons gain kinetic energy from the electric field. Along

the separatrix next to the top left island, the electron
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a) b) c) d)

e) f) g) h)

Figure 3. 2D cuts of the pressure tensor components in the rp-plane at the simulation time t = 120ω−1
pi . a) Electron scalar

pressure pe/p0. Off-diagonal components of the electron pressure tensor: b) Πra,e/p0, c) Πpa,e/p0 and d) Πpr,e/p0. e) Ion scalar
pressure pi/p0. Off-diagonal components of the ion pressure tensor: f) Πra,i/p0, g) Πpa,i/p0 and h) Πra,i/p0.

bulk motion is decelerated by the electric field. Com-
paring panels b) and d) ue · ∇ · Pe and −qene(ue · E)

balance with each other in the diffusion region.

Panel e), shows Ξks , which we compute as the sum of

all terms at the left hand side of Eq. (8). There are re-

gions with positive and negative Ξke within the magnetic

islands. On the contrary, Ξke is predominately positive

within the diffusion region and along the separatrices.

Although we do not include binary collisions in our

code explicitly, we acknowledge that the finite number

of macro particles affects the system in a way similar to

collisions, and leads to an undersampling of non-thermal

fine structure in the velocity distribution function, which

generates a loss of information and thus increase in en-

tropy.

In a real plasma, binary collisions between particles

drive the system to a thermal equilibrium, thus smooth-

ing out the distribution function. Similarly, a finite num-
ber of particles represents a low number of counts to

compute the statistical measures. Therefore, when com-

puting macroscopic quantities, the contribution from

non-thermal particles is overshadowed by the core distri-

bution. It is effectively a coarse-grained effect, similar to

the actual effect of collisions, albeit on a different time

scale. Although this effect occurs earlier in PIC simula-

tions with a finite number of particles than in the real

solar wind. We conjecture that the impact is ultimately

comparable.

Panels f) to j) of Figure 6 show 2D cuts of each term

in Eq. (11) normalized to ∆ε0. Panel f) depicts dεthe /dt.

As in the kinetic-energy case, dεthe /dt has local extrema

associated with the magnetic islands. The main change

in dεthe /dt is due to the advective term (ue · ∇)εthe . By
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a) b) c) d)

e) f) g) h)

Figure 4. Magnification of the region delimited by the black square in Figure 2 in the rp-plane at the simulation time
t = 120ω−1

pi . a) Electron scalar pressure pe. Off-diagonal components of the electron pressure tensor: b) Πra,e, c) Πpa,e and d)
Πpr,e. Panel e) shows a sketch of the patterns of the scalar pressure emerging in 2D simulations of reconnection, and f) to h)
show sketches of the off diagonal terms of the electron pressure based on 2D Harris current sheet reconnection without guide
field (Yin et al. 2001).

direct comparison with panel b), we note similar power

density patterns between dεthe /dt and ue · ∇ ·Pe.

For the heat-flux term ∇·he, we do not directly com-

pute ∇ · he as a particle moment, but use a Hammett-

Perkins approach (Hammett & Perkins 1990) to esti-

mate its contribution. This approach has been success-

fully applied in previous collisionless reconnection stud-

ies (Wang et al. 2015; Ng et al. 2015, 2017). In this

framework, we estimate

∇·he ≈ vthe
1

2
|k0|Tr [Pij,e − 〈Pij,e〉 − δij(ne − 〈ne〉)〈Te〉] ,

(21)

where vthe =
√

2kBTe/me is the thermal speed of the

electrons. The wave number k0 =
√

3/|Ls| is a repre-

sentative wave number associated with a sub-domain of

volume Vs = L3
s where Ls = 10.08 di which we select

as the region to study the energy conversion during the

reconnection event. Panel g) shows our estimation of

∇ · he. There is a positive power density contribution

from particle heatflux inside the magnetic islands. Con-

versely, there is a negative contribution in the regions

between the magnetic islands.

Panel h) depicts the energy transfer ∇ue : Pe between

kinetic and thermal energies. This term has contribu-

tions from the diagonal elements of the tensors which

are associated with the isotropic energy transport and

from the off-diagonal elements that quantify the agy-

rotropy in the plasma. There is positive ∇ue : ∇Pe in

the region between the magnetic islands which is asso-

ciated with counter streaming electrons. We locate an

x-like structure centered in the region where the mag-

netic field strength exhibits a local minimum. In the

region between the x-points as well as to the left of the

diffusion region, ∇ue : Pe < 0.
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a)

b)

c)

d)

e)

f)

g)

h)

Figure 5. 2D cuts in the rp-plane and isosurfaces of the pressure tensor components at the simulation time t = 120ω−1
pi .

a) Electron scalar pressure pe/p0. Off-diagonal components of the electron pressure tensor: b) Πra,e/p0, c) Πpa,e/p0, and d)
Πpr,e/p0. e) Ion scalar pressure pi/p0. Off-diagonal components of the ion pressure tensor: f) Πra,i/p0, g) Πpa,i/p0, and h)
Πra,i/p0.
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Panel i) shows the thermal energy transport εthe ∇ ·ue
associated with the compression/expansion of the elec-

tron flow. At first glance the positive/negative patterns

in εthe ∇·ue seem very similar to the patterns in∇ue : Pe.

The reason for this similarity is that the main energy

transport in ∇ue : Pe is associated with the contri-

bution of diagonal elements as we show in section 3.6.

However, we find local differences due to the agyrotropic

contributions. From all terms on the left-hand sides of

Eqs. (8) and (11), only the terms associated with the

strain tensor present an extended asymmetric x-point-

like structure in the diffusion region. Comparing panels

c) and i), εthe ∇·ue is on average larger and forms broader

structures than εke∇ · ue.
Panel j), shows Ξths , which we compute as the sum of

all terms on the left hand side of Eq. (11).This energy

transfer is significant as the different terms on the left-

hand side of Eq. (11) do not sum to zero.

In Figure 7, we show vertical 1D cuts of the power den-

sity terms along the p-direction at r = 5.58 di to visual-

ize the relation between the different terms for plasma

electrons. We further show a magnification of the re-

gion delimited by the black square from Figure 2. Panel

a) shows the kinetic power density terms in Eq. (8).

We observe that the fluctuations in dεke/dt (green line)

and εke∇ · ue (black line) are negligible compared with

ue ·∇·Pe (red line) and −qeneE ·ue (yellow line). How-

ever, there is a noticeable disturbance in all quantities in

the range p = 6.96 di to p = 7.84 di which is located in

the region of the diffusion region at which the magnetic

field is nearly zero. Along the 1D cut, ue · ∇ · Pe and

−qeneE · ue are anti-correlated. This anti-correlation

breaks when the disturbances in dεke/dt and εke∇·ue oc-

cur. For this panel, the curve of Ξks (blue line) changes

sign when crossing the x-point.

Panel b) shows the thermal power density terms in Eq.

(11). Comparing panels a) and b), we observe that the

fluctuations in the thermal power density terms are more

pronounced than those in the kinetic power density. In

panel b), the fluctuations in dεthe /dt (green line) and

∇ · he (red line) are negligible compared with ∇us : Pe

(black line) and εthe ∇ · ue (yellow line). Unlike in the

kinetic power density case, the contributions from all

terms in Eq. (11) are either positive or negative at the

same location showing no anti-correlation between the

dominant terms. We note that Ξthe (blue line), unlike

Ξke , is positive on both sides of the x-point.

Figure 8 shows a 3D representation of the kinetic

power density terms in panels a) through d), and of ther-

mal power density terms in panels e) through h). The 2D

cut at a = 2.76di corresponds to the 2D cuts in Figure 6.

The plotted 3D structures are isosurfaces of the power

density terms depicted on the 2D planes. Panels a)

through d) show that the isosurfaces of dεke/dt,ue·∇·Pe,

and εke are mostly thin filaments, whereas the isosur-

faces of −qeneue · E consist of broad patches. More-

over, there are more regions with −qeneue ·E > 0 than

with −qeneue · E < 0. Panels e) and f) show that the

isosurfaces of dεthe /dt and ∇ · he are also filamentary.

Conversely, panels g) and h) show that the isosurfaces

of us : Pe and εthe ∇ · ue are mainly thin sheets.

Figure 9 depicts isosurfaces of Ξke in panel a) and Ξthe
in panel b). The most evident isosurface of Ξke is a fil-

ament located within the reconnecting flux-rope. Con-

versely, the isosurfaces of Ξthe are mostly thin sheets con-

nected to the flux ropes.

3.5. Time evolution

PIC simulations are affected by finite particle size,

finite number of particles, and numerical integration

errors that are effectively “collisional” contributions

since they generate phase-space particle diffusion (Hock-

ney 1971; Dawson 1983; Klimontovich 2013; Birdsall &

Langdon 2018; Grošelj 2019). Although the right-hand

sides of the power-density relations in Eqs. (8) and (11)

include the contribution from numerical sources such

as round-off errors and numerical heating, they also in-

clude contributions from the averaged, secular (includ-

ing quasi-linear) correlations between fields and the par-

ticle distribution functions (Klein & Howes 2016; Howes

et al. 2017; Klein et al. 2017). As shown by the field–

particle correlation method, meaningful averages of the

non-linear correlations between the fluctuating electric

field and the fluctuating perturbation of the distribution

function define the secular transfer of energy from the

fields to the particles. Thus, even in a purely collisionless

plasma, the right hand sides of Eqs. (8) and (11), after

suitable averaging, is not exactly zero. In this inter-

pretation, the averaging over higher-order field-particle

correlations introduces the irreversibility and thus the

dissipation into the kinetic description. All PIC systems

share this behaviour with statistical particle systems in

reality.

In this section, we present a time-evolution analysis of

the energy-density terms in order to estimate the nature

of Ξks and Ξths . Figure 10a) shows the time evolution of

the energy densities averaged over the full simulation do-

main (solid curves, subscript full) and averaged over the

sub-domain (dashed curves, subscript sub). The curves

are normalized to ε0 = miv
2
A,i. The total energy density

is εT = εke + εki + εthe + εthi + εem. The averaged total en-

ergy densities 〈εTfull〉 and 〈εTsub〉 (green curves) remain

approximately constant. This suggests that numerical

heating is negligible in our energy balance.
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a) b) c) d) e)

f) g) h) i) j)

Figure 6. 2D cuts in the rp-plane at the simulation time t = 120ω−1
pi . Panels a) to e): kinetic power density terms for electrons.

Panels f) to j): thermal power density terms for electrons. All quantities are normalised to ∆ε0 = ωpimiv
2
A,i. The vertical

dashed lines in panels a) and f) show the 1D trajectory for our 1D analysis.

a) b)

Figure 7. 1D cuts of the power density terms along the p̂-direction at r = 5.58 di and at the simulation time t = 120ω−1
pi . a)

Kinetic power density terms in Eq. (8). b) Thermal power density terms in Eq. (11). The vertical dashed line represents the
crossing of the x-point r = 5.58di and p = 6.6di.

The thermal energy densities of both the ions (black

curves) and the electrons (magenta curves) are greater

than the kinetic energy densities of both the ions (yel-

low curves) and electrons (red curves). When averaged

over the sub-domain, the energy densities present more

variability due to the in-flowing and out-flowing of en-

ergy density through the boundaries of the sub-domain.

Nevertheless, the time evolution of the quantities εfull
and εsub is approximately comparable.

Figure 10b) depicts the time evolution of the abso-

lute values of the energy-density rates ∆〈ε〉/∆t (dashed

curves) and the dissipative power-density rates Ξ (solid-

dotted curves), now averaged over the full simulation

domain and normalized to εTfull. The time difference
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∆t = 6ω−1pi is the difference between two consecutive

output times of our simulation.

As shown in panel b), in the case of the ions, the

thermal energy-density rate (black-dashed curve) and

the kinetic energy-density rate (yellow-dashed curve)

are greater than the dissipative power-density terms

Ξthi (black solid-dotted curve) and Ξki (yellow solid-

dotted curve). The same ordering applies to the elec-

tron case in which the thermal energy-density rate (ma-

genta dashed curve) and kinetic energy-density rate (red

dashed curve) are greater than Ξke (red solid-dotted

curve) and Ξke (magenta solid-dotted curve). For both

species, ∆εth increases faster than ∆εk.

During the initial phase of the simulation (tωpi .
100), we find that 〈Ξke〉 > 〈Ξthe 〉 when averaged over

the full simulation domain. Afterwards, for tωpi & 100,

we find that 〈Ξke〉 < 〈Ξthe 〉 when averaged over the full

simulation domain until the simulation ends. The time

tωpi ≈ 100 corresponds to the moment at which the

overall Jrms reaches its global maximum in our sim-

ulation and significant magnetic reconnection sets in

(Agudelo Rueda et al. 2021).

The total energy-density rate ∆εTfull (green dashed

curve) is lower than ∆εk and εth for both species. More-

over, 〈Ξthe 〉 and 〈Ξke〉 are negligible compared with the

kinetic and thermal energy-density rates. This suggests

that any irreversible energy transfer and thus numeri-

cal heating are negligible for the energy balance in our

simulation. However, Ξthe and Ξke are locally important

near the reconnection region, see Figure 7.

3.6. Comparison with damping and heating proxies

In recent studies (Yang et al. 2017; Pezzi et al. 2019;

Matthaeus et al. 2020; Pezzi et al. 2021) the collision-

less energy dissipation problem is tackled by studying

quantities such as the Zenitani parameter defined in Eq.

(16) and the strain-pressure interaction defined in Eq.

(20). We also explore these damping and heating prox-

ies for comparison with our methods. Figure 11 depicts

2D cuts in the rp-plane and 1D cuts of these damping

and heating proxies. Panel a) shows Dze. Similar to our

kinetic and thermal power density terms, the magnetic

islands present strong variations of Dze. On the con-

trary, in the diffusion region, we see a coherent positive

Dze signature.

Panel b) shows pθe. The positive/negative patterns

of this quantity are almost identical to our patterns of

∇ue : Ps (panel h) in Figure 6. This similarity illus-

trates that the main contribution to the strain-tensor in-

teraction comes from the diagonal elements of the strain

tensor.

Panel c) shows Pi-De. Although the positive/negative

patterns in Pi-De are similar to those in pθe, Pi-De

presents clear differences, especially near the null re-

gion where Pi-De has the opposite sign of pθe along

the separatrices. Moreover, along the separatrices, |Pi-
De| > Dze and they share the same sign whereas in the

region between the x-points Pi-De < 0 and Dze > 0.

Panel d) shows 1D cuts of Dze (blue line), pθe (red

line) and Pi-De (black line). We find that pθe is highly

variable and, on average, greater than Dze and Pi-De.

This is considerably different compared with the Harris

current-sheet case (Pezzi et al. 2021) in which Dze is the

dominant energy-transfer proxy. However, this behav-

ior is consistent with turbulent simulations (Pezzi et al.

2021) and with observations of turbulent reconnection

(Bandyopadhyay et al. 2021).

4. DISCUSSION

The type of magnetic reconnection that occurs from

a turbulent cascade (Servidio et al. 2010; Loureiro &

Boldyrev 2020; Fadanelli et al. 2021; Agudelo Rueda

et al. 2021) presents a more complex geometry of the

diffusion region compared to its laminar counterpart.

Likewise, the geometry of the regions with enhanced

energy transport and transfer is more complex. More-

over, in a 3D geometry, the particle motion along the

out of plane direction allows energy transfer that 2D

geometry precludes. For instance, the agyrotropic pat-

terns in magnetic islands of 2D reconnection (Scudder &

Daughton 2008) are located in the diffusion region out-

side the magnetic islands. Conversely, in our 3D case we

observe agyrotropic patterns in the cross section of the

flux-ropes, which we call magnetic islands.

Since the plasma density is greater in the centers of the

magnetic islands, these regions exhibit a greater plasma

pressure compared to outside the islands. Patterns of

agyrotropic plasma pressure are present not only within

the magnetic islands but also in the regions between

them (Figure 3).

The non-uniform guide magnetic field present in this

reconnection event affects its geometry. Despite the 3D

nature of this event, for the diffusion region in which

|B| ≤ 0.4B0, we observe gyrotropic/agyrotropic pat-

terns (section 3.3) similar to those observed in 2D lam-

inar reconnection without guide field (Yin et al. 2001).

However, given the complex geometry of our event, we

do not observe gyrotropic/agyrotropic patterns match-

ing 2D reconnection in the part of the diffusion region

below the x-points. Moreover, we do not observe a

quadrupolar pattern of the in-plane component Πpr,e
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a)

b)

c)

d)

e)

f)

g)

h)

Figure 8. 2D cuts in the rp-plane and isosurfaces of the power density terms at the simulation time t = 120ω−1
pi . Panels a)

to e): kinetic power density terms for electrons. Panels f) to j): thermal power density terms for electrons. All quantities are
normalised to ∆ε0 = ωpimiv

2
A,i.
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a) b)

Figure 9. 2D cuts in the rp-plane and isosurfaces at the simulation time t = 120ω−1
pi . Panel a): kinetic power density dissipation

Ξk
e . b): thermal power density dissipation Ξth

e . All quantities are normalised to ∆ε0 = ωpimiv
2
A,i.

a)

b)

Figure 10. a) Time evolution of the energy densities averaged over the full simulation domain (solid curves) and over the
sub-domain (dashed curves). The total energy density is εT = εke +εki +εthe +εthi +εem. b) Time evolution of the absolute values
of the energy-density rates ∆〈ε〉/∆t (dashed curves) and the dissipative power densities Ξ (solid-dotted curves), averaged over
the full simulation domain and normalized to εTfull.
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(Figure 4d) within the diffusion region which is charac-

teristic of agyrotropy in 2D reconnection without guide

field (Yin et al. 2001).

In the reconnection event that we analyze, although

of turbulent nature, the out of plane electron motion is

consistent with the 3D shape of electron diffusion regions

observed in laboratory plasmas (Furno et al. 2005; Yoo

et al. 2013; Yamada et al. 2014).

In our event, dεke/dt > 0 along the separatrices and

dεke/dt < 0 in the outer part of the reconnecting mag-

netic island (Figure 6a). This corresponds to the accel-

eration of electrons along the separatrices (Figure 6c)

and the presence of a stagnation region. The shear be-

tween the flux ropes increases the electron thermal en-

ergy and pressure and the bulk kinetic energy reduces

at the stagnation point.

At the locations of the separatrices ue ·∇·Pe > 0 (Fig-

ure 6b). This suggests electron streams that increase

the electron pressure. Conversely, ue · ∇ · Pe < 0 in

the region between the x-points. This suggests electron

streams that reduce the electron pressure and push the

plasma within the diffusion region to a local thermal

equilibrium. While reconnection is occurring, the high

pressure electrons are allowed to fill in the diffusion re-

gion.

Within the diffusion region, the electric field increases

the electron kinetic energy density and the work done

by the electric field on the electrons −qene(ue · E) par-

tially balances with the advection of the electron pres-

sure. This is consistent with previous studies (Fadanelli

et al. 2021).

The irreversible electron energy-density change Ξke
(Figure 6e) is non-zero everywhere in the vicinity of

the reconnecting structures. The quantity Ξke displays

structures with positive and negative values within the

magnetic islands suggesting that collisional processes ac-

celerate and decelerate electron bulk flows within the

magnetic islands. Conversely, in the diffusion region,

the positive value of Ξke indicates that electrons are ir-

reversibly accelerated.

Unlike previous studies of turbulent reconnection

(Fadanelli et al. 2021), we estimate the electron ther-

mal energy transfer associated with each term of Eq.

(11). Compared to the case of the kinetic power den-

sity, the thermal power density terms present stronger

fluctuations. This is evident when comparing dεke/dt

(Figure 6a) and dεthe /dt (Figure 6f) as well as compar-

ing εke∇·ue (Figure 6c) and εthe ∇·ue ( Figure 6i). This

difference suggests that the electron bulk flows more ef-

ficiently transport thermal energy density than bulk ki-

netic energy density.

The power density terms associated with the compres-

sion/expansion of the flow ∇ue : Ps and εthe ∇ · ue ex-

hibit a strong coherence with the electron motion along

the reconnection separatrices. The electron streams gain

thermal energy (i.e., heating) associated with the recon-

nection. This is consistent with simulations of fast colli-

sionless reconnection at low β (Loureiro et al. 2013) and

observations of magnetospheric reconnection (Chasapis

et al. 2017; Holmes et al. 2019).

The most important contribution to ∇ue : Ps comes

from the isotropic part of the strain pressure term.

Correspondingly, εthe ∇ · ue presents patterns similar to

∇ue : Ps. Moreover, the contribution of the off-diagonal

elements in ∇ue and Pe to the thermal energy trans-

port is less than the isotropic contribution, which is con-

sistent with previous studies of turbulent reconnection

(Fadanelli et al. 2021; Bandyopadhyay et al. 2021). The

terms associated with electron compressibility (εthe ∇·ue
and ∇ue : Ps) are typically greater than the heat flux

contribution (∇·hs) suggesting that, for collisionless re-

connection, compressible thermal energy-density trans-

port is important for electrons. On average, within the

sub-domain, the electrons gain kinetic energy at the ex-

pense of the electric field (Figure 8d). The electrons

both lose and gain thermal energy (Figures 8g and 8h)

predominantly along thin sheet-like structures.

Similar to the irreversible kinetic energy-density trans-

fer Ξke , the irreversible thermal energy transfer Ξthe is

non-zero within the reconnecting structures as well as

within the diffusion region. Moreover, electrons irre-

versibly gain thermal energy density at the location of

the separatrices and within the diffusion region.

The irreversible kinetic energy-density transfer is

mainly confined to the flux-ropes in our simulation (Fig-

ure 9a). Conversely, the irreversible thermal energy-

density transfer (Figure 9b) occurs in thin sheet-like

structures that extend for over 5di.

Although 〈Ξke〉 is negligible compared to ∆εke (Fig-

ure 10b), the fact that Ξke is comparable to qeneE · ue
and ue ·∇ ·Pe (Figure 7a) implies that Ξke must be con-

sidered in the local kinetic energy transfer of electrons as

it includes important information about the oscillating

energy associated with instantaneous field–particle cor-

relations (Klein & Howes 2016; Howes et al. 2017; Klein

et al. 2017). Only meaningful averages of the non-linear

correlations between the fluctuating electric field and the

fluctuating perturbation of the distribution function de-

fine the secular transfer of energy from the fields to the

particles. Therefore, we propose that an energy-balance

analysis based on the energy-density expressions derived

from the collisionless Vlasov equation is not entirely ac-

curate for kinetic simulations. Because numerical effects
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a) b) c) d)

Figure 11. Damping and heating proxies at the simulation time t = 120ω−1
pi . 2D cuts in the rp-plane of a) Zenitani parameter

for electrons Dze. b) Diagonal part of the strain-pressure interaction pθe. c) Off-diagonal part of the strain-pressure interaction
Pi-De. d) 1D cut of these terms as in Figure 7.

in kinetic simulations act as an effective collision oper-

ator, the energy balance equations derived from Vlasov

without provision for the terms on the right-hand side

of Eq. 1 are not exactly satisfied.

Comparing our results with damping (Dz,e) and heat-

ing (pθe and Pi-De) proxies (Pezzi et al. 2021), we ob-

serve that fluctuations of pθe inside the diffusion region

(Figure 11d) are typically greater than fluctuations of

Dz,e and Pi-De. Integrating over the sub-domain (not

shown here), we find that pθe/∆ε0|V > |PiDe|/∆ε0|V .

This suggests that, within the sub-domain, the electron

heating is mostly due to compressive effects. This is

consistent with results from turbulent simulations (Pezzi

et al. 2021) and observations of turbulent reconnection

(Bandyopadhyay et al. 2021), but not with results from

simulations of laminar reconnection.

The proxies pθe and Pi-De share the same signs at

most locations in our simulation domain. However, in

the diffusion region near the null region, the opposite

sign of Pi-De and pθe suggests that agyrotropic heat-

ing mechanisms can emerge to compensate for any re-

duction or increase in the thermal energy density due

to isotropic heating mechanisms. Moreover, integrat-

ing over the sub-domain and over time, we find that

pθe|V,t = 0.0137 and Pi-De|V,t = −0.0190. This sug-

gests that pθ is greater than Pi-D within the diffusion

region at the particular time selected but not thought

out the whole simulation, due to a local effect.

The positive values of Dz,e and the negative value

of pθe and Pi-De in the region between the x-points

suggest that electrons gain kinetic energy density from

the fields while losing thermal energy density. Between

the x-points, the electric field accelerates electrons (Fig-

ure 6d). The increase in the electrons’ kinetic energy

density may be due to Landau damping (Landau 1946;

Howes et al. 2006; Li et al. 2016). Conversely, the mag-

netic pressure (not shown here) increases near the re-

gion between the x-points. The total pressure balance

requires a depletion of pe and pi (as confirmed by Fig-

ures 3a and 3e) in the diffusion region. Plasma pressure

depletion have been suggested to be responsible for the

onset of fast reconnection in collisionless plasmas (Liu

et al. 2022). Thus the expansion and the consequen-

tial cooling-off of the electrons reduces their thermal en-

ergy.

5. CONCLUSIONS

We derive a framework to quantify the collision-like

effects that lead to irreversible energy transfer and thus

dissipation in PIC plasmas. We identify and locate

magnetic reconnection as a key mechanism for heating,

damping, and dissipation in plasma turbulence in low-

collisionality systems like the solar wind.

Previously, the transfer and transport of energy in

plasmas with low collisionality has been studied sepa-

rately in simulations of reconnection (Hesse & Winske

1998; Hesse et al. 2001; Zenitani et al. 2011; Muñoz et al.

2017; Pucci et al. 2018; Pezzi et al. 2019, 2021) and tur-

bulence (Wan et al. 2012; Yang et al. 2017; Li et al.

2019; Pezzi et al. 2021). The transfer and transport in

magnetic reconnection that forms from a turbulent cas-

cade have been limited to 2D geometries (Parashar et al.

2009; Fadanelli et al. 2021) and observations (Chasapis

et al. 2018; Bandyopadhyay et al. 2020), while the 3D

case has received little attention. We study, for the first

time the energy transport associated with 3D magnetic
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reconnection that occurs as a consequence of a turbulent

cascade to a high level of detail and including all power

density terms resulting from the full Boltzmann equa-

tion. We extend the analysis of similar studies (Fadanelli

et al. 2021) by exploring the transfer and transport of

thermal energy for electrons.

The energy transfer and transport in collisionesless

plasmas is believed to be governed by non-thermal and

kinetic mechanisms such as resonant (Marsch et al. 2003;

Kasper et al. 2008) and non resonant heating processes

(Chandran et al. 2010, 2013). However, the irreversible

energy transport is ultimately associated with collisional

effects Schekochihin et al. (2009).

The agyrotropy signatures present in the reconnection

diffusion region as well as in the reconnecting magnetic

structures allows for agyrotropic energy transfer mecha-

nisms such agyrotropic-driven instabilities to take place

not only near the electron diffusion region (Ricci et al.

2004; Roytershteyn et al. 2012; Graham et al. 2017) but

also within the reconnecting magnetic structures. These

signatures are three-dimensional as they extend in the

a-direction for over 5di. A study of the instabilities that

occur during a 3D turbulent reconnection event would

be worthwhile to enhanced our understanding of the col-

lisionless energy dissipation.

We show that the contribution to the energy-density

transfer from collision is not negligible. To determine

the exact source of this contribution, future work must

use large number of particles while keeping the 3D geom-

etry. In addition, the inclusion of a controllable collision

operator would allow for a detailed study of collisions in

3D reconnection (Pezzi 2017; Donnel et al. 2019; Boesl

et al. 2020; Pezzi et al. 2021).

The general framework that we introduce is suitable

for estimating the irreversible energy-density transfer of

the particle species in the solar wind. For instance, Eqs.

(8) and (11) can be applied to spacecraft data to study

the radial evolution of energy as a function of helio-

spheric distance in the solar wind. This work would

be of interest both for the energetics of solar-wind elec-

trons (Scime et al. 1994; Innocenti et al. 2020) and the

solar wind prontons (Matteini et al. 2007; Hellinger et al.

2011; Adhikari et al. 2020)
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APPENDIX

A. DERIVATION OF THE EQUATIONS FOR THE ENERGY DENSITIES

To derive the nth moment of the Boltzmann equation (1), we take the dyadic product of Eq. (1) with vn on the left

and integrate the equation over the entire velocity space. The zeroth moment leads to

∂ns
∂t

+∇ · (nsus) = Ξ0
s. (A1)

The collision operator has the property Ξ0
s = 0 as it must conserve the number of particles. In this case, Eq. (A1) is

the continuity equation. The first moment leads to

∂(nsus)

∂t
+

1

ms
∇ · Ps −

qs
ms

ns(E + us ×B) = Ξ1
s, (A2)

where

Ps ≡ ms

∫
fsvvd3v. (A3)
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We separate the second moment in Eq. (A3) according to ∇ · P = ∇ ·P +∇ · (nmuu), where P is defined in Eq. (4).

Invoking Eq. (A1), Eq. (A2) takes the form

d(nsmsus)

dt
= −∇ ·Ps − (∇ · us)nsmsus + qsns(E + us ×B) +msΞ

1
s. (A4)

This equation describes the total change in time of the bulk momentum density for each species.

The second moment of Eq. (1) yields

∂Ps

∂t
+∇ ·

[
(Qijk,s + ui,sPij,s + Pij,suk,s + uj,sPik,s)ê

i ⊗ êj ⊗ êk
]
− qs
ms

(
Ps ×B−B×Ps

)
=

−∇ · (nsmsususus)−
∂(nsmsusus)

∂t
+ qsns

[
Eus + usE +

1

ms
((usus)×B−B× (usus))

]
+msΞ

2

s, (A5)

where Qijk,s represent the elements of the heat-flux tensor

Qs ≡ ms

∫
fs(v − us)(v − us)(v − us)d

3v. (A6)

Eqs. (A4) and (A5) are the exact first and second moments of Eq. (1).

We proceed to derive expressions for the energy densities εks and εths . For this purpose, we take the scalar product

of Eq. (A4) with us which leads to Eq. (8). To obtain an expression for the thermal energy εth, we take the trace of

Eq. (A5). For the calculation of the trace of the cross product terms in Eq. (A5) we use an element-wise approach.

If A is a vector and M is a second rank tensor, the cross product is defined as A×M = εlipAiMpqê
l ⊗ êq. It can be

shown that M ×A = −
(
A×MT

)T
, where MT

is the transposed of M and Tr(A ×M) = εijkAiMjk. Moreover, if

M is a symmetric tensor, then Tr(A×M) = 0. In addition, the trace of ∇ ·Q corresponds to 2∇ · h. This procedure

leads to

dεths
dt

+
dεks
dt

+∇ · hs +∇us : Ps + (∇ · us)εths + us · (∇ ·Ps) =

−(∇ · us)εks + qsnsE · us +
1

2
Tr
(
msΞ

2

s

)
. (A7)

Combining Eqs. (8) and (A7), we obtain Eq. (11).
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